
Evaluating Parallel Processing
Using SMP & Workstation Clusters

for ECS Science Algorithms
Narayan Prasad

Scott Bramhall Marek Chmielowski
Linwood Moses

December 6, 1994
NP -1430-TR-002-001

 NP-2430-TR-002-001

Goals

• To determine if Symmetric Multiprocessing (SMP) & Distributed
Memory parallel Processing (DMP) using workstation cluster
technologies provide viable alternatives for ECS science processing in
terms of price/performance, ease of creating new applications, ease of
converting existing serial applications, etc.

• How should code be structured to extract maximum performance with
minimal effort?

• What types of code constructs to avoid in (data) parallel programming?
• Evaluate automatic parallelization compilers that can be a good starting

point to improve performance of a program
• Provide inputs to science algorithm developers who would like to use

parallel programming
• Alert project on important issues relating to these technologies

 NP-3430-TR-002-001

MIMD Parallel Memory Models

 SHARED MEMORY DISTRIBUTED MEMORY

CPU

MEMORY

CPU

CPU CPU

CPU
MEMORY

CPU
MEMORY

CPU
MEMORY

CPU
MEMORY

Each CPU can decode, issue instructions
independent of other processors. All
processors access the same memory.

e.g. SGI Challenge, SGI Power Challenge,
Convex Exemplar

Each CPU can decode, issue instructions
independent of other processors. Each process
can only access its own memory. Must transfer
data to other CPUs if needed.

e.g. Workstation cluster, IBM SP-2, Cray T3D
(can be used in shared memory paradigm also)

 NP-4430-TR-002-001

SMP Hardware Platform

• SGI Challenge XL (8 processors) used for evaluation
- 150 MHz MIPS RISC R4400 64-bit processors

• Power Fortran Accelerator (PFA)
- native source-to-source parallelizing preprocessor that enables

existing Fortran 77, programs to run efficiently on SGI
multiprocessor systems

- identifies loops for data dependencies, automatically inserts
compiler directives in a modified copy of the original source code

- listing file optionally generated by PFA can be used to identify
potential data dependencies that prevented PFA from running a loop
in parallel

- can freely combine serial code with parallel code for execution
• Power C Analyzer (PCA)

- native C code parallelizing preprocessor similar to PFA
• Major difference between PFA and PCA are that there are additional

tools available with PFA that is not available with PCA to make
parallelization easier (C is a harder language to parallelize than Fortran)

 NP-5430-TR-002-001

Purdue benchmark set* to
evaluate parallel processors

 Purpose

• Evaluate constructs for (data) parallel programming
• For training purposes
• To understand code behavior in SMP and DMP environments
• Good starting point to understand parallel programming “hands-on”
• To provide insights and lessons to build new applications for parallel

environments (e.g. without dependencies and other parallelization
inhibitors)

*Appendix A-1 and A-2 contain more detailed information

 NP-6430-TR-002-001

 Background

• SSM/I instrument onboard Defense Meteorological Satellite Program’s
(DMSP) satellite
- source code from NASA/MSFC

• Input data sets (granularized, geolocated with corrections and QC) in
HDF format containing antenna temperatures, spacecraft parameters,
auxiliary data sets, etc.

• Output data set is HDF containing precipitation rates (16 orbits/day)
• Algorithm

- processing routines to compute precipitation rates
- routines to add geolocation to HDF file (mostly I/O)
- routines for browse image generation

• processing is done sequentially for each orbit for multiple frequencies

Pathfinder SSM/I precipitation rate
algorithm

 NP-7430-TR-002-001

Steps to a parallel Pathfinder
SSM/I program

• Performance analysis of the serial program indicated that the
processing part was the most time consuming

• Automatic parallelization and performance analysis indicated only
marginal improvement in performance (speedup of 2 on 8 processors)
- parallelization was never in mind during original development

• Analyzed PFA (Forge 90 from Applied Parallel Research, Inc. is also
available for SMP) listing to improve performance

• Developed parallelization strategy
- identified medium-/coarse-grained parallelism
- found 16 orbit processing loop to be parallelizable

• Removed parallelization inhibitors
- COMMON blocks, I/O, data dependencies, system call

 NP-8430-TR-002-001

Performance expressed as % over
serial (SMP)

% Change
Over Serial

-40

-20

0

20

40

60

80

100

Se
ria
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Gain

Price

Number of Processors

Wall Clock Time

CPU Time

 NP-9430-TR-002-001

Performance expressed as ratio
over serial (SMP)

Performance
Ratio

Number of Processors

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

Se
rial

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wall Clock Time

CPU Time Gain

Price

 NP-10430-TR-002-001

Performance as speedup (SMP)

Number of Processors

Speedup

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

200

400

600

800

1000

1200

Ideal Speedup

Speedup

CPU Utilization

CPU Utilization

 NP-11430-TR-002-001

SMP thread creation and
operation

Master
Thread

Create
Slaves

Exit
Parallel
Region

Enter
Parallel
Region

Enter
Parallel
Region

Exit
Parallel
Region

Exit
Parallel
Region End

Both
master and
slaves work

Both
master and
slaves work

Both
master and
slaves work

Master works
slaves spin/

blocked

Master works
slaves spin/

blocked

Master works
slaves spin/

blocked

 NP-12430-TR-002-001

SMP Issues

• The shared memory model allows non-threadsafe libraries to be used in serial (HDF, SDP
Toolkit, etc.) by toggling between serial and parallel modes - Refer to Technical Paper # 194-
430-TPW-001 in the EDHS SDPS bulletin board (see Appendix A-5)

• This can affect overall performance of a parallel algorithm, and may not work for all
algorithms. Some algorithms may require use of toolkit functions within a parallel region
(e.g. geolocating pixels/cells when processing pixels/cells in parallel)

• Potential impact of SDP Toolkit on parallel processing
- Shared memory model requires special handling of global address space
- All toolkit functions have I/O in their calling chain (for status messaging, etc.). This

inhibits parallelism (unless designed for parallel I/O when standardized). For now,
cannot use any toolkit function inside a parallel region because of embedded I/O.

• Potential impact of HDF libraries on parallel processing
- provide some parallel I/O support on select machines like CM-5
- Shared memory model requires redesign of global address space. For now HDF can

only be used serially on most machines.

 NP-13430-TR-002-001

SMP advantages/disadvantages

• Advantages
- SMP is easier to program (1.5 MM for SSM/I < 2000 LOC) - to be interpreted with

CAUTION!!!
- Good for programmers who like reasonable performance with minimal effort
- No load balancing problem - performed automatically by the operating system
- Source code is portable (no machine specific instructions)
- Achieving high performance by parallelization is relatively painless
- Tool intelligent enough, shifting a fair amount of responsibility away from the

programmer
• Disadvantages

- SMP is not very scalable (DMP is scalable)
- I/O is serial
- Key to successful parallelization still lies with how well the analyst understands the

algorithm, and his ability to abstractly identify parallel and independent portions within
the algorithm, and the skill of his programmer to code without introducing
parallelization inhibitors

 NP-14430-TR-002-001

Parallel computing on workstation
cluster

Distributed Memory Parallelizer* (Forge 90 and xHPF from
Applied Parallel Research, Inc. [APR])

• SPMD (Single Program Multiple Data) model (a natural extension of
sequential processing)
- all processors execute the same program
- iterations of parallelized array operations and DO loops are

distributed across processors on a network
- they work on different data depending upon allocation and

distribution of arrays referenced within the enclosed code
- serial code and undistributed loops are replicated on all processors

• uses APR and subset HPF directives
• uses a message passing library for communication (PVM, Linda, etc.)
• I/O is performed on one processor designated as processor zero

* See Appendix A-3 for more information

 NP-15430-TR-002-001

SPMD Model

Accept updated
arrays from nodes

Write
Output

BlockBlockBlock

Exit
Accept Program Completion Notification from remote nodes

Node 0 Node 1 Node 2 Node n

Block Block Block

Transfer partitioned
data to remote nodes

Process
Loop

Iterations

Process
Loop

Iterations

Process
Loop

Iterations

Process
Loop

Iterations

Read
Input

All Nodes
execute the
same code

Start
Send Start Notification to remote nodes

 NP-16430-TR-002-001

APR Tools vs. I/O Libraries

• When I/O statements are specified as Fortran “Read/Write” and compiled using auto
parallelization compiler, then I/O is automatically understood and performed on node 0
(serially because I/O is not currently parallelizable)

• When called functions are in another language like C (e.g. SDP Toolkit, HDF), the code is
replicated on all processors and the presence of I/O statements are not understood by the
parallel compiler. The replicated I/O function is then executed on all the nodes which can
cause failure (when writing output).

• How do we handle I/O with HDF/SDP Toolkit?
Solutions/workarounds to handle I/O for HDF

- Write jacket routines to ensure I/O is performed only on node 0 (originally proposed by
APR - not the recommended solution because it is too complex). However, it will work
for any kind of data arrangement within a file

- Processes running on multiple processors can read appropriate portions from the
same file simultaneously (because they have unique process id and have separate
address space). For output write in serial mode (easiest to implement but can only be
used for input that has already been preprocessed with data arranged as orbits, swaths,
cells, etc.)

- Use parallel I/O when available in standardized form for both input and output (APR
tool appears to be poised for parallel I/O) - most elegant solution

• No solutions for SDP Toolkit at this time

 NP-17430-TR-002-001

Implementing calls to I/O libraries

• Serial implementation

Application Code
Calls

I/O Library Routine

• “Wrapped” Parallel Implementation (see Appendix A-6)

Application Code
Calls

I/O Library Routine

Extrinsic Routine

Wrapper Routine

 NP-18430-TR-002-001

Speedup (processing) on
workstation cluster

Processors

0

0.5

1

1.5

2

2.5

3

3.5

4

Parallel - 1 Parallel - 2 Parallel - 3 Parallel - 4

Speedup

Ideal Speedup

Processor Types:
1 - HP 735 3 - SGI Indigo
2 - HP 735 4 - SGI Challenge XL

Speedup Ratio

 NP-19430-TR-002-001

Speedup (processing + I/O) on
workstation cluster

Processors

0

0.5

1

1.5

2

2.5

3

3.5

4

Parallel - 1 Parallel - 2 Parallel - 3 Parallel - 4

Speedup

Ideal Speedup

Processor Types:
1 - HP 735
2 - HP 735
3 - SGI Indigo
4 - SGI Challenge XL

Speedup Ratio

 NP-20430-TR-002-001

Advantages
• Economical
• Source code is portable
• Dynamically scalable (can work even on a single workstation)
• Can be used as a testbed for parallel program development for MPPs
• No address space contention because of separate memory (one less worry for HDF, SDP

Toolkit)
Disadvantages

• Handling I/O
- parallel I/O from hardware perspective (limited support on few m/cs like CM-5, etc.)
- parallel I/O from software perspective (PASSION from Syracuse University, etc.) - some

implementations but no standards available
- SDP Toolkit will need special handling of I/O, process control file, global buffer

management, etc. in a DMP environment
- parallel interface not available for HDF operating in workstation cluster environment

• Handling failure and recovery is more complicated than DMP in one cabinet (IBM SP-2, etc.)
• Overall performance is dependent on interconnect performance (very high performance

networks can make it seamless)
• Must use other means for dynamic load balancing

DMP Workstation cluster

 NP-21430-TR-002-001

DMP Workstation cluster (cont.)

Other issues
• DMP tools are advanced for Fortran but not so for C family
• Heterogeneity (must be of same architecture family when using tools)
• Parallelization tools for SMP clusters are also available combining

shared and distributed memory paradigms to address multiple levels of
parallelism in a single portable program

 NP-22430-TR-002-001

SMP and DMP summary

• A parallelization strategy should be done at design and implemented
when coding. A parallel program will run on a single processor also.

• Both SMP and workstation cluster technologies are viable alternatives
to serial computing

• Parallelization tools are very sophisticated. Can guide even novice
parallel programmers to set up applications quickly.

• Parallelization tools to cluster SMPs together as SMP/DMP should
further make cluster computing attractive and easier on the
programmer

 NP-23430-TR-002-001

Lab Demo

• Pathfinder SSM/I on SGI Challenge (SMP)
- serial and parallel (with and without SDP Toolkit) versions will be

compared
• Purdue benchmark set on workstation cluster demonstrating

distributed heterogeneous cooperative computing
- 7 testbed workstations of different makes will be used

• Pathfinder SSM/I on workstation cluster
- Resource restriction permits distributed computing on only 4

platforms

 NP-24430-TR-002-001

APPENDIX

The following slides are for additional information and will not be covered
in this presentation

 NP-25430-TR-002-001

A-1
Purdue benchmark set to evaluate

parallel processors

 Background

• Purdue benchmark set is a collection of computational problems, that
are simple, yet diverse, and selectively address different aspects of
parallel computing

• Suite of 15 problems extracted from larger computations representing a
sample of practical computations

• The problems represent various schemes of data dependencies, from
very simple application with almost no interprocessor communication,
to more complex with large communication overhead, to irregular
problems difficult to parallelize

• Benchmarks are available in Fortran 77, Fortran 90, Fortran 90D and
Fortran for Massively Parallel Processors using message passing

• Used Fortran 77 benchmarks for this evaluation

 NP-26430-TR-002-001

 Summary

• How the different problems parallelize to the PFA are analyzed to gain
understanding of the parallelization preprocessor

• PFA (or PCA) appears to be a good starting point for parallelization of
sequential algorithms

• Good performance with minimal effort depends upon how well the code
has been thought about originally

• Parallelization strategies provided by the PFA are useful to further
“hand code” automatically parallelized programs to improve
performance

• Analyzing Purdue set behavior provided insights into parallelizing a
real world application - Pathfinder SSM/I precipitation rate algorithm.

A-2
Purdue benchmark set to evaluate

parallel processors

 NP-27430-TR-002-001

A-3
APR Toolset

• xHPF
- Fortran 77, Fortran 90 batch parallelizer
- can use directives for user-customized parallelization
- can use serial timing statistics to better tailor automatic

parallelization
• Forge 90

- Same as XHPF except that it is a GUI-based interactive Fortran
analyzer/parallelizer

 NP-28430-TR-002-001

Performance of SSM/I on
workstation cluster

Processor Types:
1 - HP 735
2 - HP 735
3 - SGI Indigo
4 - SGI Challenge XLSerial

Parallel - 1

Parallel - 2

Parallel - 3

Parallel - 4

Processors

Process User

Process Total CPU

Process Wall0

100

200

300

400

500

600

Seconds

SSM/I Main Process

Process User

Process Total CPU

Process Wall

Processing part was

repeated 10 times for

16 orbits of data

 NP-29430-TR-002-001

A-5
Documents on prototyping

The ECS Data Handling System (EDHS) provides information about all the
prototypes. The URL is http:://edhs1.gsfc.nasa.gov/

• Click SDPS under Segment Office Home Pages
• Click SDPS Prototypes
• This prototype is listed under Science Software Execution Prototype

 NP-30430-TR-002-001

A-6
Jacket routines implementation

• The wrapper declares new versions of arrays to hold input variables
and passes them to extrinsic. The wrapper also distributes data
returned from extrinsic

• Extrinsic determines if the node running is node 0, and if so performs I/
O. Returns input data or status to wrapper

